R-PAGE
Resistance's Portable-Adventure-Game-Engine
tinfl.c
Go to the documentation of this file.
1 /* tinfl.c v1.11 - public domain inflate with zlib header parsing/adler32 checking (inflate-only subset of miniz.c)
2  See "unlicense" statement at the end of this file.
3  Rich Geldreich <richgel99@gmail.com>, last updated May 20, 2011
4  Implements RFC 1950: http://www.ietf.org/rfc/rfc1950.txt and RFC 1951: http://www.ietf.org/rfc/rfc1951.txt
5 
6  The entire decompressor coroutine is implemented in tinfl_decompress(). The other functions are optional high-level helpers.
7 */
8 #ifndef TINFL_HEADER_INCLUDED
9 #define TINFL_HEADER_INCLUDED
10 
11 #include <stdlib.h>
12 #include <stdio.h>
13 
14 typedef unsigned char mz_uint8;
15 typedef signed short mz_int16;
16 typedef unsigned short mz_uint16;
17 typedef unsigned int mz_uint32;
18 typedef unsigned int mz_uint;
19 typedef unsigned long mz_uint64;
20 
21 #if defined(_M_IX86) || defined(_M_X64)
22 // Set MINIZ_USE_UNALIGNED_LOADS_AND_STORES to 1 if integer loads and stores to unaligned addresses are acceptable on the target platform (slightly faster).
23 #define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1
24 // Set MINIZ_LITTLE_ENDIAN to 1 if the processor is little endian.
25 #define MINIZ_LITTLE_ENDIAN 1
26 #endif
27 
28 #if defined(_WIN64) || defined(__MINGW64__) || defined(_LP64) || defined(__LP64__)
29 // Set MINIZ_HAS_64BIT_REGISTERS to 1 if the processor has 64-bit general purpose registers (enables 64-bit bitbuffer in inflator)
30 #define MINIZ_HAS_64BIT_REGISTERS 1
31 #endif
32 
33 // Works around MSVC's spammy "warning C4127: conditional expression is constant" message.
34 #ifdef _MSC_VER
35  #define MZ_MACRO_END while (0, 0)
36 #else
37  #define MZ_MACRO_END while (0)
38 #endif
39 
40 // Decompression flags used by tinfl_decompress().
41 // TINFL_FLAG_PARSE_ZLIB_HEADER: If set, the input has a valid zlib header and ends with an adler32 checksum (it's a valid zlib stream). Otherwise, the input is a raw deflate stream.
42 // TINFL_FLAG_HAS_MORE_INPUT: If set, there are more input bytes available beyond the end of the supplied input buffer. If clear, the input buffer contains all remaining input.
43 // TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: If set, the output buffer is large enough to hold the entire decompressed stream. If clear, the output buffer is at least the size of the dictionary (typically 32KB).
44 // TINFL_FLAG_COMPUTE_ADLER32: Force adler-32 checksum computation of the decompressed bytes.
45 enum
46 {
51 };
52 
53 // Print out the defines, if any.
54 void tinflDiag(void);
55 
56 // High level decompression functions:
57 // tinfl_decompress_mem_to_heap() decompresses a block in memory to a heap block allocated via malloc().
58 // On entry:
59 // pSrc_buf, src_buf_len: Pointer and size of the Deflate or zlib source data to decompress.
60 // On return:
61 // Function returns a pointer to the decompressed data, or NULL on failure.
62 // *pOut_len will be set to the decompressed data's size, which could be larger than src_buf_len on uncompressible data.
63 // The caller must free() the returned block when it's no longer needed.
64 void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags);
65 
66 // tinfl_decompress_mem_to_mem() decompresses a block in memory to another block in memory.
67 // Returns TINFL_DECOMPRESS_MEM_TO_MEM_FAILED on failure, or the number of bytes written on success.
68 #define TINFL_DECOMPRESS_MEM_TO_MEM_FAILED ((size_t)(-1))
69 size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags);
70 
71 // tinfl_decompress_mem_to_callback() decompresses a block in memory to an internal 32KB buffer, and a user provided callback function will be called to flush the buffer.
72 // Returns 1 on success or 0 on failure.
73 typedef int (*tinfl_put_buf_func_ptr)(const void* pBuf, int len, void *pUser);
74 int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size, tinfl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags);
75 
77 
78 // Max size of LZ dictionary.
79 #define TINFL_LZ_DICT_SIZE 32768
80 
81 // Return status.
82 typedef enum
83 {
90 } tinfl_status;
91 
92 // Initializes the decompressor to its initial state.
93 #define tinfl_init(r) do { (r)->m_state = 0; } MZ_MACRO_END
94 #define tinfl_get_adler32(r) (r)->m_check_adler32
95 
96 // Main low-level decompressor coroutine function. This is the only function actually needed for decompression. All the other functions are just high-level helpers for improved usability.
97 // This is a universal API, i.e. it can be used as a building block to build any desired higher level decompression API. In the limit case, it can be called once per every byte input or output.
98 tinfl_status tinfl_decompress(tinfl_decompressor *r, const mz_uint8 *pIn_buf_next, size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, const mz_uint32 decomp_flags);
99 
100 // Internal/private bits follow.
101 enum
102 {
105 };
106 
107 typedef struct
108 {
112 
113 #if MINIZ_HAS_64BIT_REGISTERS
114  #define TINFL_USE_64BIT_BITBUF 1
115 #endif
116 
117 #if TINFL_USE_64BIT_BITBUF
118  typedef mz_uint64 tinfl_bit_buf_t;
119  #define TINFL_BITBUF_SIZE (64)
120 #else
122  #define TINFL_BITBUF_SIZE (32)
123 #endif
124 
126 {
132 };
133 
134 #endif // #ifdef TINFL_HEADER_INCLUDED
135 
136 // ------------------- End of Header: Implementation follows. (If you only want the header, define MINIZ_HEADER_FILE_ONLY.)
137 
138 #ifndef TINFL_HEADER_FILE_ONLY
139 
140 #include <string.h>
141 
142 // MZ_MALLOC, etc. are only used by the optional high-level helper functions.
143 #ifdef MINIZ_NO_MALLOC
144  #define MZ_MALLOC(x) NULL
145  #define MZ_FREE(x) x, ((void)0)
146  #define MZ_REALLOC(p, x) NULL
147 #else
148  #define MZ_MALLOC(x) malloc(x)
149  #define MZ_FREE(x) free(x)
150  #define MZ_REALLOC(p, x) realloc(p, x)
151 #endif
152 
153 #define MZ_MAX(a,b) (((a)>(b))?(a):(b))
154 #define MZ_MIN(a,b) (((a)<(b))?(a):(b))
155 #define MZ_CLEAR_OBJ(obj) memset(&(obj), 0, sizeof(obj))
156 
157 #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
158  #define MZ_READ_LE16(p) *((const mz_uint16 *)(p))
159  #define MZ_READ_LE32(p) *((const mz_uint32 *)(p))
160 #else
161  #define MZ_READ_LE16(p) ((mz_uint32)(((const mz_uint8 *)(p))[0]) | ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U))
162  #define MZ_READ_LE32(p) ((mz_uint32)(((const mz_uint8 *)(p))[0]) | ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U) | ((mz_uint32)(((const mz_uint8 *)(p))[2]) << 16U) | ((mz_uint32)(((const mz_uint8 *)(p))[3]) << 24U))
163 #endif
164 
165 #define TINFL_MEMCPY(d, s, l) memcpy(d, s, l)
166 #define TINFL_MEMSET(p, c, l) memset(p, c, l)
167 
168 #define TINFL_CR_BEGIN switch(r->m_state) { case 0:
169 #define TINFL_CR_RETURN(state_index, result) do { status = result; r->m_state = state_index; goto common_exit; case state_index:; } MZ_MACRO_END
170 #define TINFL_CR_RETURN_FOREVER(state_index, result) do { for ( ; ; ) { TINFL_CR_RETURN(state_index, result); } } MZ_MACRO_END
171 #define TINFL_CR_FINISH }
172 
173 // TODO: If the caller has indicated that there's no more input, and we attempt to read beyond the input buf, then something is wrong with the input because the inflator never
174 // reads ahead more than it needs to. Currently TINFL_GET_BYTE() pads the end of the stream with 0's in this scenario.
175 #define TINFL_GET_BYTE(state_index, c) do { \
176  if (pIn_buf_cur >= pIn_buf_end) { \
177  for ( ; ; ) { \
178  if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) { \
179  TINFL_CR_RETURN(state_index, TINFL_STATUS_NEEDS_MORE_INPUT); \
180  if (pIn_buf_cur < pIn_buf_end) { \
181  c = *pIn_buf_cur++; \
182  break; \
183  } \
184  } else { \
185  c = 0; \
186  break; \
187  } \
188  } \
189  } else c = *pIn_buf_cur++; } MZ_MACRO_END
190 
191 #define TINFL_NEED_BITS(state_index, n) do { mz_uint c; TINFL_GET_BYTE(state_index, c); bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); num_bits += 8; } while (num_bits < (mz_uint)(n))
192 #define TINFL_SKIP_BITS(state_index, n) do { if (num_bits < (mz_uint)(n)) { TINFL_NEED_BITS(state_index, n); } bit_buf >>= (n); num_bits -= (n); } MZ_MACRO_END
193 #define TINFL_GET_BITS(state_index, b, n) do { if (num_bits < (mz_uint)(n)) { TINFL_NEED_BITS(state_index, n); } b = bit_buf & ((1 << (n)) - 1); bit_buf >>= (n); num_bits -= (n); } MZ_MACRO_END
194 
195 // TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes remaining in the input buffer falls below 2.
196 // It reads just enough bytes from the input stream that are needed to decode the next Huffman code (and absolutely no more). It works by trying to fully decode a
197 // Huffman code by using whatever bits are currently present in the bit buffer. If this fails, it reads another byte, and tries again until it succeeds or until the
198 // bit buffer contains >=15 bits (deflate's max. Huffman code size).
199 #define TINFL_HUFF_BITBUF_FILL(state_index, pHuff) \
200  do { \
201  temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]; \
202  if (temp >= 0) { \
203  code_len = temp >> 9; \
204  if ((code_len) && (num_bits >= code_len)) \
205  break; \
206  } else if (num_bits > TINFL_FAST_LOOKUP_BITS) { \
207  code_len = TINFL_FAST_LOOKUP_BITS; \
208  do { \
209  temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \
210  } while ((temp < 0) && (num_bits >= (code_len + 1))); if (temp >= 0) break; \
211  } TINFL_GET_BYTE(state_index, c); bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); num_bits += 8; \
212  } while (num_bits < 15);
213 
214 // TINFL_HUFF_DECODE() decodes the next Huffman coded symbol. It's more complex than you would initially expect because the zlib API expects the decompressor to never read
215 // beyond the final byte of the deflate stream. (In other words, when this macro wants to read another byte from the input, it REALLY needs another byte in order to fully
216 // decode the next Huffman code.) Handling this properly is particularly important on raw deflate (non-zlib) streams, which aren't followed by a byte aligned adler-32.
217 // The slow path is only executed at the very end of the input buffer.
218 #define TINFL_HUFF_DECODE(state_index, sym, pHuff) do { \
219  int temp; mz_uint code_len, c; \
220  if (num_bits < 15) { \
221  if ((pIn_buf_end - pIn_buf_cur) < 2) { \
222  TINFL_HUFF_BITBUF_FILL(state_index, pHuff); \
223  } else { \
224  bit_buf |= (((tinfl_bit_buf_t)pIn_buf_cur[0]) << num_bits) | (((tinfl_bit_buf_t)pIn_buf_cur[1]) << (num_bits + 8)); pIn_buf_cur += 2; num_bits += 16; \
225  } \
226  } \
227  if ((temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0) \
228  code_len = temp >> 9, temp &= 511; \
229  else { \
230  code_len = TINFL_FAST_LOOKUP_BITS; do { temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; } while (temp < 0); \
231  } sym = temp; bit_buf >>= code_len; num_bits -= code_len; } MZ_MACRO_END
232 
233 tinfl_status tinfl_decompress(tinfl_decompressor *r, const mz_uint8 *pIn_buf_next, size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, const mz_uint32 decomp_flags)
234 {
235  static const int s_length_base[31] = { 3,4,5,6,7,8,9,10,11,13, 15,17,19,23,27,31,35,43,51,59, 67,83,99,115,131,163,195,227,258,0,0 };
236  static const int s_length_extra[31]= { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 };
237  static const int s_dist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, 257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0};
238  static const int s_dist_extra[32] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
239  static const mz_uint8 s_length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 };
240  static const int s_min_table_sizes[3] = { 257, 1, 4 };
241 
242  tinfl_status status = TINFL_STATUS_FAILED; mz_uint32 num_bits, dist, counter, num_extra; tinfl_bit_buf_t bit_buf;
243  const mz_uint8 *pIn_buf_cur = pIn_buf_next, *const pIn_buf_end = pIn_buf_next + *pIn_buf_size;
244  mz_uint8 *pOut_buf_cur = pOut_buf_next, *const pOut_buf_end = pOut_buf_next + *pOut_buf_size;
245  size_t out_buf_size_mask = (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) ? (size_t)-1 : ((pOut_buf_next - pOut_buf_start) + *pOut_buf_size) - 1, dist_from_out_buf_start;
246 
247  // Ensure the output buffer's size is a power of 2, unless the output buffer is large enough to hold the entire output file (in which case it doesn't matter).
248  if (((out_buf_size_mask + 1) & out_buf_size_mask) || (pOut_buf_next < pOut_buf_start)) { *pIn_buf_size = *pOut_buf_size = 0; return TINFL_STATUS_BAD_PARAM; }
249 
250  num_bits = r->m_num_bits; bit_buf = r->m_bit_buf; dist = r->m_dist; counter = r->m_counter; num_extra = r->m_num_extra; dist_from_out_buf_start = r->m_dist_from_out_buf_start;
252 
253  bit_buf = num_bits = dist = counter = num_extra = r->m_zhdr0 = r->m_zhdr1 = 0; r->m_z_adler32 = r->m_check_adler32 = 1;
254  if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER)
255  {
257  counter = (((r->m_zhdr0 * 256 + r->m_zhdr1) % 31 != 0) || (r->m_zhdr1 & 32) || ((r->m_zhdr0 & 15) != 8));
258  if (!(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) counter |= (((1U << (8U + (r->m_zhdr0 >> 4))) > 32768U) || ((out_buf_size_mask + 1) < (size_t)(1U << (8U + (r->m_zhdr0 >> 4)))));
259  if (counter) { TINFL_CR_RETURN_FOREVER(36, TINFL_STATUS_FAILED); }
260  }
261 
262  do
263  {
264  TINFL_GET_BITS(3, r->m_final, 3); r->m_type = r->m_final >> 1;
265  if (r->m_type == 0)
266  {
267  TINFL_SKIP_BITS(5, num_bits & 7);
268  for (counter = 0; counter < 4; ++counter) { if (num_bits) TINFL_GET_BITS(6, r->m_raw_header[counter], 8); else TINFL_GET_BYTE(7, r->m_raw_header[counter]); }
269  if ((counter = (r->m_raw_header[0] | (r->m_raw_header[1] << 8))) != (mz_uint)(0xFFFF ^ (r->m_raw_header[2] | (r->m_raw_header[3] << 8)))) { TINFL_CR_RETURN_FOREVER(39, TINFL_STATUS_FAILED); }
270  while ((counter) && (num_bits))
271  {
272  TINFL_GET_BITS(51, dist, 8);
273  while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(52, TINFL_STATUS_HAS_MORE_OUTPUT); }
274  *pOut_buf_cur++ = (mz_uint8)dist;
275  counter--;
276  }
277  while (counter)
278  {
279  size_t n; while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(9, TINFL_STATUS_HAS_MORE_OUTPUT); }
280 
281  while (pIn_buf_cur >= pIn_buf_end)
282  {
283  if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT)
284  {
286  }
287  else
288  {
290  }
291  }
292  n = MZ_MIN(MZ_MIN((size_t)(pOut_buf_end - pOut_buf_cur), (size_t)(pIn_buf_end - pIn_buf_cur)), counter);
293  TINFL_MEMCPY(pOut_buf_cur, pIn_buf_cur, n); pIn_buf_cur += n; pOut_buf_cur += n; counter -= (mz_uint)n;
294  }
295  }
296  else if (r->m_type == 3)
297  {
299  }
300  else
301  {
302  if (r->m_type == 1)
303  {
304  mz_uint8 *p = r->m_tables[0].m_code_size; mz_uint i;
305  r->m_table_sizes[0] = 288; r->m_table_sizes[1] = 32; TINFL_MEMSET(r->m_tables[1].m_code_size, 5, 32);
306  for ( i = 0; i <= 143; ++i) *p++ = 8; for ( ; i <= 255; ++i) *p++ = 9; for ( ; i <= 279; ++i) *p++ = 7; for ( ; i <= 287; ++i) *p++ = 8;
307  }
308  else
309  {
310  for (counter = 0; counter < 3; counter++) { TINFL_GET_BITS(11, r->m_table_sizes[counter], "\05\05\04"[counter]); r->m_table_sizes[counter] += s_min_table_sizes[counter]; }
311  MZ_CLEAR_OBJ(r->m_tables[2].m_code_size); for (counter = 0; counter < r->m_table_sizes[2]; counter++) { mz_uint s; TINFL_GET_BITS(14, s, 3); r->m_tables[2].m_code_size[s_length_dezigzag[counter]] = (mz_uint8)s; }
312  r->m_table_sizes[2] = 19;
313  }
314  for ( ; (int)r->m_type >= 0; r->m_type--)
315  {
316  int tree_next, tree_cur; tinfl_huff_table *pTable;
317  mz_uint i, j, used_syms, total, sym_index, next_code[17], total_syms[16]; pTable = &r->m_tables[r->m_type]; MZ_CLEAR_OBJ(total_syms); MZ_CLEAR_OBJ(pTable->m_look_up); MZ_CLEAR_OBJ(pTable->m_tree);
318 
319  for (i = 0; i < r->m_table_sizes[r->m_type]; ++i) total_syms[pTable->m_code_size[i]]++;
320  used_syms = 0, total = 0; next_code[0] = next_code[1] = 0;
321  for (i = 1; i <= 15; ++i) { used_syms += total_syms[i]; next_code[i + 1] = (total = ((total + total_syms[i]) << 1)); }
322  if ((65536 != total) && (used_syms > 1))
323  {
325  }
326  for (tree_next = -1, sym_index = 0; sym_index < r->m_table_sizes[r->m_type]; ++sym_index)
327  {
328  mz_uint rev_code = 0, l, cur_code, code_size = pTable->m_code_size[sym_index]; if (!code_size) continue;
329  cur_code = next_code[code_size]++; for (l = code_size; l > 0; l--, cur_code >>= 1) rev_code = (rev_code << 1) | (cur_code & 1);
330 
331  if (code_size <= TINFL_FAST_LOOKUP_BITS) { mz_int16 k = (mz_int16)((code_size << 9) | sym_index); while (rev_code < TINFL_FAST_LOOKUP_SIZE) { pTable->m_look_up[rev_code] = k; rev_code += (1 << code_size); } continue; }
332  if (0 == (tree_cur = pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)])) { pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)] = (mz_int16)tree_next; tree_cur = tree_next; tree_next -= 2; }
333  rev_code >>= (TINFL_FAST_LOOKUP_BITS - 1);
334  for (j = code_size; j > (TINFL_FAST_LOOKUP_BITS + 1); j--)
335  {
336  tree_cur -= ((rev_code >>= 1) & 1);
337  if (!pTable->m_tree[-tree_cur - 1]) { pTable->m_tree[-tree_cur - 1] = (mz_int16)tree_next; tree_cur = tree_next; tree_next -= 2; } else tree_cur = pTable->m_tree[-tree_cur - 1];
338  }
339  tree_cur -= ((rev_code >>= 1) & 1); pTable->m_tree[-tree_cur - 1] = (mz_int16)sym_index;
340  }
341  if (r->m_type == 2)
342  {
343  for (counter = 0; counter < (r->m_table_sizes[0] + r->m_table_sizes[1]); )
344  {
345  mz_uint s; TINFL_HUFF_DECODE(16, dist, &r->m_tables[2]); if (dist < 16) { r->m_len_codes[counter++] = (mz_uint8)dist; continue; }
346  if ((dist == 16) && (!counter))
347  {
349  }
350  num_extra = "\02\03\07"[dist - 16]; TINFL_GET_BITS(18, s, num_extra); s += "\03\03\013"[dist - 16];
351  TINFL_MEMSET(r->m_len_codes + counter, (dist == 16) ? r->m_len_codes[counter - 1] : 0, s); counter += s;
352  }
353  if ((r->m_table_sizes[0] + r->m_table_sizes[1]) != counter)
354  {
356  }
358  }
359  }
360  for ( ; ; )
361  {
362  mz_uint8 *pSrc;
363 
364 
365  for ( ; ; )
366  {
367  if (((pIn_buf_end - pIn_buf_cur) < 4) || ((pOut_buf_end - pOut_buf_cur) < 2))
368  {
369  TINFL_HUFF_DECODE(23, counter, &r->m_tables[0]);
370  if (counter >= 256)
371  break;
372  while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(24, TINFL_STATUS_HAS_MORE_OUTPUT); }
373  *pOut_buf_cur++ = (mz_uint8)counter;
374  }
375  else
376  {
377  int sym2; mz_uint code_len;
378 #if TINFL_USE_64BIT_BITBUF
379  if (num_bits < 30) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE32(pIn_buf_cur)) << num_bits); pIn_buf_cur += 4; num_bits += 32; }
380 #else
381  if (num_bits < 15) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits); pIn_buf_cur += 2; num_bits += 16; }
382 #endif
383  if ((sym2 = r->m_tables[0].m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0)
384  code_len = sym2 >> 9;
385  else
386  {
387  code_len = TINFL_FAST_LOOKUP_BITS; do { sym2 = r->m_tables[0].m_tree[~sym2 + ((bit_buf >> code_len++) & 1)]; } while (sym2 < 0);
388  }
389  counter = sym2; bit_buf >>= code_len; num_bits -= code_len;
390  if (counter & 256)
391  break;
392 
393 #if !TINFL_USE_64BIT_BITBUF
394  if (num_bits < 15) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits); pIn_buf_cur += 2; num_bits += 16; }
395 #endif
396  if ((sym2 = r->m_tables[0].m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0)
397  code_len = sym2 >> 9;
398  else
399  {
400  code_len = TINFL_FAST_LOOKUP_BITS; do { sym2 = r->m_tables[0].m_tree[~sym2 + ((bit_buf >> code_len++) & 1)]; } while (sym2 < 0);
401  }
402  bit_buf >>= code_len; num_bits -= code_len;
403 
404  pOut_buf_cur[0] = (mz_uint8)counter;
405  if (sym2 & 256)
406  {
407  pOut_buf_cur++;
408  counter = sym2;
409  break;
410  }
411  pOut_buf_cur[1] = (mz_uint8)sym2;
412  pOut_buf_cur += 2;
413  }
414  }
415  if ((counter &= 511) == 256) break;
416 
417  num_extra = s_length_extra[counter - 257]; counter = s_length_base[counter - 257];
418  if (num_extra) { mz_uint extra_bits; TINFL_GET_BITS(25, extra_bits, num_extra); counter += extra_bits; }
419 
420  TINFL_HUFF_DECODE(26, dist, &r->m_tables[1]);
421  num_extra = s_dist_extra[dist]; dist = s_dist_base[dist];
422  if (num_extra) { mz_uint extra_bits; TINFL_GET_BITS(27, extra_bits, num_extra); dist += extra_bits; }
423 
424  dist_from_out_buf_start = pOut_buf_cur - pOut_buf_start;
425  if ((dist > dist_from_out_buf_start) && (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF))
426  {
428  }
429 
430  pSrc = pOut_buf_start + ((dist_from_out_buf_start - dist) & out_buf_size_mask);
431 
432  if ((MZ_MAX(pOut_buf_cur, pSrc) + counter) > pOut_buf_end)
433  {
434  while (counter--)
435  {
436 
437  while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(53, TINFL_STATUS_HAS_MORE_OUTPUT); }
438  *pOut_buf_cur++ = pOut_buf_start[(dist_from_out_buf_start++ - dist) & out_buf_size_mask];
439  }
440  continue;
441  }
442 #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
443  else if ((counter >= 9) && (counter <= dist))
444  {
445  const mz_uint8 *pSrc_end = pSrc + (counter & ~7);
446  do
447  {
448 
449  ((mz_uint32 *)pOut_buf_cur)[0] = ((const mz_uint32 *)pSrc)[0];
450  ((mz_uint32 *)pOut_buf_cur)[1] = ((const mz_uint32 *)pSrc)[1];
451  pOut_buf_cur += 8;
452  } while ((pSrc += 8) < pSrc_end);
453  if ((counter &= 7) < 3)
454  {
455  if (counter)
456  {
457  pOut_buf_cur[0] = pSrc[0];
458  if (counter > 1)
459  pOut_buf_cur[1] = pSrc[1];
460  pOut_buf_cur += counter;
461  }
462  continue;
463  }
464  }
465 #endif
466  do
467  {
468 
469  pOut_buf_cur[0] = pSrc[0];
470  pOut_buf_cur[1] = pSrc[1];
471  pOut_buf_cur[2] = pSrc[2];
472  pOut_buf_cur += 3; pSrc += 3;
473  } while ((int)(counter -= 3) > 2);
474  if ((int)counter > 0)
475  {
476  pOut_buf_cur[0] = pSrc[0];
477  if ((int)counter > 1)
478  pOut_buf_cur[1] = pSrc[1];
479  pOut_buf_cur += counter;
480  }
481  }
482  }
483  } while (!(r->m_final & 1));
484  if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER)
485  {
486  TINFL_SKIP_BITS(32, num_bits & 7); for (counter = 0; counter < 4; ++counter) { mz_uint s; if (num_bits) TINFL_GET_BITS(41, s, 8); else TINFL_GET_BYTE(42, s); r->m_z_adler32 = (r->m_z_adler32 << 8) | s; }
487  }
490 
491 common_exit:
492 
493  r->m_num_bits = num_bits; r->m_bit_buf = bit_buf; r->m_dist = dist; r->m_counter = counter; r->m_num_extra = num_extra; r->m_dist_from_out_buf_start = dist_from_out_buf_start;
494  *pIn_buf_size = pIn_buf_cur - pIn_buf_next; *pOut_buf_size = pOut_buf_cur - pOut_buf_next;
495  if ((decomp_flags & (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32)) && (status >= 0))
496  {
497  const mz_uint8 *ptr = pOut_buf_next; size_t buf_len = *pOut_buf_size;
498  mz_uint32 i, s1 = r->m_check_adler32 & 0xffff, s2 = r->m_check_adler32 >> 16; size_t block_len = buf_len % 5552;
499  while (buf_len)
500  {
501 
502  for (i = 0; i + 7 < block_len; i += 8, ptr += 8)
503  {
504  s1 += ptr[0], s2 += s1; s1 += ptr[1], s2 += s1; s1 += ptr[2], s2 += s1; s1 += ptr[3], s2 += s1;
505  s1 += ptr[4], s2 += s1; s1 += ptr[5], s2 += s1; s1 += ptr[6], s2 += s1; s1 += ptr[7], s2 += s1;
506  }
507  for ( ; i < block_len; ++i) s1 += *ptr++, s2 += s1;
508  s1 %= 65521U, s2 %= 65521U; buf_len -= block_len; block_len = 5552;
509  }
510  r->m_check_adler32 = (s2 << 16) + s1; if ((status == TINFL_STATUS_DONE) && (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) && (r->m_check_adler32 != r->m_z_adler32)) status = TINFL_STATUS_ADLER32_MISMATCH;
511  }
512  return status;
513 }
514 
515 // Higher level helper functions.
516 void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags)
517 {
518  tinfl_decompressor decomp; void *pBuf = NULL, *pNew_buf; size_t src_buf_ofs = 0, out_buf_capacity = 0;
519  *pOut_len = 0;
520  tinfl_init(&decomp);
521  for ( ; ; )
522  {
523  size_t src_buf_size = src_buf_len - src_buf_ofs, dst_buf_size = out_buf_capacity - *pOut_len, new_out_buf_capacity;
524  tinfl_status status = tinfl_decompress(&decomp, (const mz_uint8*)pSrc_buf + src_buf_ofs, &src_buf_size, (mz_uint8*)pBuf, pBuf ? (mz_uint8*)pBuf + *pOut_len : NULL, &dst_buf_size,
526  if ((status < 0) || (status == TINFL_STATUS_NEEDS_MORE_INPUT))
527  {
528  MZ_FREE(pBuf); *pOut_len = 0; return NULL;
529  }
530  src_buf_ofs += src_buf_size;
531  *pOut_len += dst_buf_size;
532  if (status == TINFL_STATUS_DONE) break;
533  new_out_buf_capacity = out_buf_capacity * 2; if (new_out_buf_capacity < 128) new_out_buf_capacity = 128;
534  pNew_buf = MZ_REALLOC(pBuf, new_out_buf_capacity);
535  if (!pNew_buf)
536  {
537  MZ_FREE(pBuf); *pOut_len = 0; return NULL;
538  }
539  pBuf = pNew_buf; out_buf_capacity = new_out_buf_capacity;
540  }
541  return pBuf;
542 }
543 
544 size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags)
545 {
546  tinfl_decompressor decomp; tinfl_status status; tinfl_init(&decomp);
547  status = tinfl_decompress(&decomp, (const mz_uint8*)pSrc_buf, &src_buf_len, (mz_uint8*)pOut_buf, (mz_uint8*)pOut_buf, &out_buf_len, (flags & ~TINFL_FLAG_HAS_MORE_INPUT) | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
548  return (status != TINFL_STATUS_DONE) ? TINFL_DECOMPRESS_MEM_TO_MEM_FAILED : out_buf_len;
549 }
550 
551 int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size, tinfl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags)
552 {
553  int result = 0;
554  tinfl_decompressor decomp;
555  mz_uint8 *pDict = (mz_uint8*)MZ_MALLOC(TINFL_LZ_DICT_SIZE); size_t in_buf_ofs = 0, dict_ofs = 0;
556  if (!pDict)
557  return TINFL_STATUS_FAILED;
558  tinfl_init(&decomp);
559  for ( ; ; )
560  {
561  size_t in_buf_size = *pIn_buf_size - in_buf_ofs, dst_buf_size = TINFL_LZ_DICT_SIZE - dict_ofs;
562  tinfl_status status = tinfl_decompress(&decomp, (const mz_uint8*)pIn_buf + in_buf_ofs, &in_buf_size, pDict, pDict + dict_ofs, &dst_buf_size,
564  in_buf_ofs += in_buf_size;
565  if ((dst_buf_size) && (!(*pPut_buf_func)(pDict + dict_ofs, (int)dst_buf_size, pPut_buf_user)))
566  break;
567  if (status != TINFL_STATUS_HAS_MORE_OUTPUT)
568  {
569  result = (status == TINFL_STATUS_DONE);
570  break;
571  }
572  dict_ofs = (dict_ofs + dst_buf_size) & (TINFL_LZ_DICT_SIZE - 1);
573  }
574  MZ_FREE(pDict);
575  *pIn_buf_size = in_buf_ofs;
576  return result;
577 }
578 
579 void tinflDiag(void)
580 {
581  printf("tinflDiag()\n");
582 
583  #ifdef MINIZ_LITTLE_ENDIAN
584  printf("MINIZ_LITTLE_ENDIAN.\n");
585  #endif
586 
587  #ifdef MINIZ_USE_UNALIGNED_LOADS_AND_STORES
588  printf("MINIZ_USE_UNALIGNED_LOADS_AND_STORES.\n");
589  #endif
590 
591  #ifdef MINIZ_HAS_64BIT_REGISTERS
592  printf("MINIZ_HAS_64BIT_REGISTERS.\n");
593  #endif
594 }
595 
596 #endif // #ifndef TINFL_HEADER_FILE_ONLY
597 
598 /*
599  This is free and unencumbered software released into the public domain.
600 
601  Anyone is free to copy, modify, publish, use, compile, sell, or
602  distribute this software, either in source code form or as a compiled
603  binary, for any purpose, commercial or non-commercial, and by any
604  means.
605 
606  In jurisdictions that recognize copyright laws, the author or authors
607  of this software dedicate any and all copyright interest in the
608  software to the public domain. We make this dedication for the benefit
609  of the public at large and to the detriment of our heirs and
610  successors. We intend this dedication to be an overt act of
611  relinquishment in perpetuity of all present and future rights to this
612  software under copyright law.
613 
614  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
615  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
616  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
617  IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
618  OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
619  ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
620  OTHER DEALINGS IN THE SOFTWARE.
621 
622  For more information, please refer to <http://unlicense.org/>
623 */
mz_uint32 m_num_extra
Definition: tinfl.c:127
#define TINFL_CR_RETURN_FOREVER(state_index, result)
Definition: tinfl.c:170
#define TINFL_DECOMPRESS_MEM_TO_MEM_FAILED
Definition: tinfl.c:68
tinfl_status tinfl_decompress(tinfl_decompressor *r, const mz_uint8 *pIn_buf_next, size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, const mz_uint32 decomp_flags)
Definition: tinfl.c:233
#define TINFL_HUFF_DECODE(state_index, sym, pHuff)
Definition: tinfl.c:218
unsigned int mz_uint32
Definition: tinfl.c:17
#define tinfl_init(r)
Definition: tinfl.c:93
mz_uint32 m_type
Definition: tinfl.c:127
#define TINFL_MEMSET(p, c, l)
Definition: tinfl.c:166
#define TINFL_CR_BEGIN
Definition: tinfl.c:168
unsigned short mz_uint16
Definition: tinfl.c:16
mz_uint32 m_dist
Definition: tinfl.c:127
#define TINFL_GET_BYTE(state_index, c)
Definition: tinfl.c:175
mz_int16 m_tree[TINFL_MAX_HUFF_SYMBOLS_0 *2]
Definition: tinfl.c:110
unsigned char mz_uint8
Definition: tinfl.c:14
int(* tinfl_put_buf_func_ptr)(const void *pBuf, int len, void *pUser)
Definition: tinfl.c:73
#define TINFL_SKIP_BITS(state_index, n)
Definition: tinfl.c:192
#define TINFL_CR_FINISH
Definition: tinfl.c:171
mz_int16 m_look_up[TINFL_FAST_LOOKUP_SIZE]
Definition: tinfl.c:110
tinfl_status
Definition: tinfl.c:82
unsigned long mz_uint64
Definition: tinfl.c:19
mz_uint32 m_num_bits
Definition: tinfl.c:127
#define MZ_MALLOC(x)
Definition: tinfl.c:148
#define TINFL_LZ_DICT_SIZE
Definition: tinfl.c:79
size_t m_dist_from_out_buf_start
Definition: tinfl.c:129
signed short mz_int16
Definition: tinfl.c:15
tinfl_huff_table m_tables[TINFL_MAX_HUFF_TABLES]
Definition: tinfl.c:130
mz_uint8 m_len_codes[TINFL_MAX_HUFF_SYMBOLS_0+TINFL_MAX_HUFF_SYMBOLS_1+137]
Definition: tinfl.c:131
#define MZ_READ_LE16(p)
Definition: tinfl.c:161
mz_uint8 m_code_size[TINFL_MAX_HUFF_SYMBOLS_0]
Definition: tinfl.c:109
mz_uint32 m_z_adler32
Definition: tinfl.c:127
#define MZ_MIN(a, b)
Definition: tinfl.c:154
#define MZ_REALLOC(p, x)
Definition: tinfl.c:150
#define TINFL_MEMCPY(d, s, l)
Definition: tinfl.c:165
unsigned int mz_uint
Definition: tinfl.c:18
mz_uint32 m_zhdr0
Definition: tinfl.c:127
size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len, const void *pSrc_buf, size_t src_buf_len, int flags)
Definition: tinfl.c:544
#define TINFL_GET_BITS(state_index, b, n)
Definition: tinfl.c:193
tinfl_bit_buf_t m_bit_buf
Definition: tinfl.c:128
mz_uint32 m_check_adler32
Definition: tinfl.c:127
mz_uint32 m_final
Definition: tinfl.c:127
mz_uint32 m_table_sizes[TINFL_MAX_HUFF_TABLES]
Definition: tinfl.c:127
mz_uint32 m_zhdr1
Definition: tinfl.c:127
int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size, tinfl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags)
Definition: tinfl.c:551
mz_uint32 m_counter
Definition: tinfl.c:127
mz_uint8 m_raw_header[4]
Definition: tinfl.c:131
#define MZ_FREE(x)
Definition: tinfl.c:149
#define TINFL_CR_RETURN(state_index, result)
Definition: tinfl.c:169
#define MZ_READ_LE32(p)
Definition: tinfl.c:162
#define MZ_CLEAR_OBJ(obj)
Definition: tinfl.c:155
mz_uint32 m_state
Definition: tinfl.c:127
#define MZ_MAX(a, b)
Definition: tinfl.c:153
void * tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, size_t *pOut_len, int flags)
Definition: tinfl.c:516
mz_uint32 tinfl_bit_buf_t
Definition: tinfl.c:121
void tinflDiag(void)
Definition: tinfl.c:579